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The decay of high-Reynolds-number inhomogeneous turbulence in an unbounded
domain is considered. The turbulence may be initially localized in one to three spatial
directions and the fluid is assumed to be at rest at infinity in those directions. Previous
arguments used to determine the decay laws of homogeneous turbulence are extended
to the decay of inhomogeneous turbulence by integrating the turbulence statistics over
the inhomogeneous directions. Dimensional arguments based on the invariance or
near-invariance of low-wavenumber spectral coefficients associated with the integrated
mean-square velocity are used to determine asymptotic decay laws for inhomogeneous
turbulence. These decay laws depend on the number of inhomogeneous directions of
the flow field and reduce to the well-known decay laws of homogeneous turbulence
when this number is zero. Different decay laws are determined depending on the
spectral behaviour at low wavenumbers. Asymptotic similarity states of the spectrum
during the decay and of the distribution of the mean-square velocity along the
inhomogeneous directions are also determined. An analytical result for the decay of
the mean-square velocity at the centre of the initial disturbance is found, and the
decay proceeds more rapidly with increasing number of inhomogeneous directions
due to the transport of energy along those directions.

Large-eddy simulations of decaying turbulence homogeneous in a plane and lo-
calized in a single direction are performed to test the theoretical scaling laws. The
numerically determined asymptotic decay laws of the integrated mean-square velocity
agree well with the theoretical predictions. A self-similar decay of the spectra and
mean-square velocity distributions is also observed. The simulation results suggest
that when the low-wavenumber spectral coefficient is an exact invariant, a unique
similarity state depending only on the initial value of this invariant and independent
of all other aspects of the initial conditions is attained asymptotically.

1. Introduction
The simplest type of inhomogeneous turbulence occurs in an unbounded fluid

in which an initial random disturbance to the fluid velocity is localized in one or
more spatial directions. The mean-square velocity of the fluid at a fixed point then
decays as a consequence of both viscous dissipation and the outward transport of
energy from turbulent to less turbulent regions along the directions of statistical
inhomogeneity. Analytical solutions for the final period of decay of this simplest
type of inhomogeneous turbulence were obtained by Phillips (1956), and the main
purpose of this work is to extend his low-Reynolds-number final period results to
high Reynolds numbers.
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Decaying inhomogeneous turbulence in an unbounded domain is a close relative
of decaying homogeneous turbulence, for which the rate of decay of the mean-square
velocity is the same at all points in the fluid. High-Reynolds-number decay laws of
the mean-square velocity in homogeneous turbulence are well-known (Kolmogorov
1941; Saffman 1967b), and large-eddy simulations have verified those laws to within
a few percent (Chasnov 1994). The fundamental difference between homogeneous
turbulence and the inhomogeneous turbulence considered here is the spatial transport
of energy from active turbulent regions to quiescent fluid. That transport may be
along a single axis if the turbulence is initially homogeneous in a plane, or may be in
all three directions if the initial turbulent motion is completely localized.

Our problem with a single inhomogeneous direction shares common features with
the shearless turbulence mixing layer, for which experimental and numerical data
exist (Gibert 1980; Veeravalli & Warhaft 1989; Briggs et al. 1996). In both problems
the turbulence is inhomogeneous along a single direction and there is an absence of
boundaries and mean shear. The essential difference is the behaviour of the fluid
at infinity along the inhomogeneous direction. In the mixing layer the fluid motion
approaches homogeneous turbulence at infinity whereas in the problem studied here
the fluid approaches a state of rest.

The equations governing the decay of the mean-square velocity of inhomogeneous
turbulence for which the fluid is at rest at infinity along the inhomogeneous directions
may be made similar to that for homogeneous turbulence if the mean-square velocity
is integrated over the inhomogeneous directions of the turbulence. The extra transport
terms in the equations are then converted to surface integrals which vanish. Scaling
arguments previously applied to homogeneous turbulence may then be used to
determine the evolution of the integrated mean-square velocity. We will show that
the generalized scaling laws thus obtained define different asymptotic similarity states
for freely decaying turbulence with zero to three directions of inhomogeneity.

The first part of this work, presented in §2 and §3, contains a heuristic derivation
of the analytical scaling laws for decaying inhomogeneous turbulence. The second
part, presented in §4 and §5, details the method and results of large-eddy simulations
designed to test some of the predicted decay laws. The simulations consider an initial
random flow field which is homogeneous in a plane and localized in a single direction,
with a given spectrum and mean-square velocity distribution.

2. Fundamentals and statistics
The Navier–Stokes and continuity equations governing an incompressible fluid’s

motion are given by
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+ uj
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from which an evolution equation for the mean-square velocity at a fixed spatial point
may be obtained:
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where u2 = uiui, and 〈. . .〉 denotes an ensemble average, or equivalently an average
over the spatial coordinates for which the turbulence is homogeneous. Inhomogeneous
turbulence in an unbounded domain differs from homogeneous turbulence due to the
additional transport terms on the left-hand side of (2.3), which are non-zero only for
derivatives taken along the inhomogeneous directions. Further integration of (2.3)
over the n inhomogeneous spatial coordinates eliminates the transport term since the
fluid is at rest at infinity, and one obtains

d

dt

∫
〈u2〉dnx = −2ν

∫
〈(∂ui/∂xj)2〉dnx . (2.4)

We define en to be one-half the integrated mean-square velocity of our inhomogeneous
turbulence:

en =
1

2

∫
〈u2〉dnx , (2.5)

and (2.4) shows that en monotonically decreases in time due to viscous dissipation.
The corresponding spectrum En(k) of wavenumber magnitude k may be defined
from the spherically integrated Fourier transform of the integrated two-point velocity
correlation as

En(k, t) =
1

(2π)3

∫ ∫ ∫
1
2
〈ui(x)ui(x+ r)〉 exp (−ik · r)dnx dr dA(k) , (2.6)

where the integral dA is over the surface of a sphere in Fourier space of radius k.
The integral of En(k, t) over k yields en, so that (2.4) may be rewritten in terms of the
spectrum En as

d

dt

∫
En(k, t)dk = −2ν

∫
k2En(k, t)dk . (2.7)

It will be useful to define two characteristic length scales of the flow field: one an
integral scale of the turbulence itself, and the other representative of the spatial inho-
mogeneity. The characteristic length scale of the turbulence is defined by integrating
the (integrated) velocity product over a separation length r and averaging over all the
directions of r. Averaging over all the directions is physically meaningful only if the
integral scales of the turbulence in the homogeneous and inhomogeneous directions
grow at the same rate, and our later numerical experiments have indicated that this
is indeed the case. The integral scale of the turbulence l(t) is thus defined as

l =
1

2en

∫ ∫ 〈ui(x)ui(x+ r)〉
4πr2

dxndr (2.8)

and is related to the spectrum by

l =
π

2en

∫ ∞
0

k−1En(k)dk . (2.9)

It is clear that l is a characteristic length of the scale sizes which contribute most to
en. The representative length scale of the spatial inhomogeneity is defined as

d =

[
3

8nen

∫
|x|2〈u2〉(x)dnx

]1/2

(2.10)

where the integration is over the inhomogeneous directions with origin at the centre
of the disturbance. The length scale d is directly proportional to the width of the
spatial inhomogeneity, and this will be shown explicitly for a particular choice of
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initial conditions in §4. Our choice of constants in (2.10) is such that l and d are
bounded by the same maximum value in our later numerical simulations performed
in triply periodic domains. More details on this latter point can also be found in §4.

3. Scaling laws
In previous work (Chasnov 1994), we argued that the final period of decay laws

for homogeneous turbulence (Batchelor 1953) can motivate a heuristic derivation of
the high-Reynolds-number decay laws using simple scaling arguments based on low-
wavenumber spectral coefficients of the turbulence energy spectrum. The asymptotic
final period of decay laws necessarily depends linearly on these low-wavenumber
spectral invariants: the equations of motion are linear in the final period of decay,
and viscous forces preferentially dissipate energy at high wavenumbers. In addition
to a linear dependence on the low-wavenumber spectral coefficient, the energy decay
law only depends on the kinematic viscosity ν of the fluid and the evolution time
t. A similar scaling law can be advanced at high Reynolds numbers where the
molecular viscosity is conceptually replaced by a turbulent viscosity and thus no
longer enters the scaling as an independent parameter. The absence of the molecular
viscosity from the high-Reynolds-number scaling laws is in accord with the usual
turbulence phenomenology that the energy dissipation rate approaches a non-zero
constant in the limit of zero viscosity. It is thus reasonable that the energy decay law
at high Reynolds number now depends nonlinearly on the low-wavenumber spectral
coefficients and on the time t alone. Decay laws of the mean-square velocity of
homogeneous turbulence previously determined by Kolmogorov (1941) and Saffman
(1967b) may be rederived in this way.

In considering the final period of decay of inhomogeneous turbulence, Phillips
(1956) showed that the decay laws again depend linearly on low-wavenumber invari-
ants, and on viscosity and time t. During the final period for which the equations are
linear, (2.7) holds at each k so that

∂

∂t
En(k, t) = −2νk2En(k, t) . (3.1)

Equation (3.1) may be solved analytically provided the form of the initial spectrum
upon entering the final period is known. A long-time solution only requires the
form of the spectrum near k = 0, and Phillips considered directly an expansion of the
vorticity and velocity fields near zero wavenumber for a localized velocity disturbance.
Here, we simply assume that an expansion of the spectrum En(k, t) near k = 0 may
be given by

En(k, t) = 2πσnk2(B0 + B2k
2 + . . .) , (3.2)

where σ is a length scale representative of the inhomogeneity. As in the work of
Batchelor & Proudman (1956), Phillips took B0 to be identically zero when the
turbulence was homogeneous in one or more directions, but Saffman (1967a) later
demonstrated that this was not necessarily so. Saffman also showed that B0 is strictly
invariant in time and his argument still applies to flows which are inhomogeneous in
one or more directions. When B0 is initially zero, nonlinear transfer processes result
in B2(t) 6= 0. In the final period however, when the equations of motion are linear, B2

is independent of time. The exact asymptotic final period of decay laws may now be
determined analytically from (3.1) and one finds

en ∝ (σnB0)(νt)
−3/2 or en ∝ (σnB2)(νt)

−5/2. (3.3)
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B0 6= 0 B0 = 0

n en ∝ l ∝ en ∝ l ∝
0 B

2/5
0 t−6/5 B

1/5
0 t2/5 B

2/7
2 t−10/7 B

1/7
2 t2/7

1 (σB0)1/2t−1 (σB0)1/6t1/3 (σB2)3/8t−5/4 (σB2)1/8t1/4

2 (σ2B0)4/7t−6/7 (σ2B0)1/7t2/7 (σ2B2)4/9t−10/9 (σ2B2)1/9t2/9

3 (σ3B0)5/8t−3/4 (σ3B0)1/8t1/4 (σ3B2)1/2t−1 (σ3B2)1/10t1/5

Table 1. Scaling of the integrated energy en and the integral scale l for differing numbers of
inhomogeneous directions

n 〈u2〉, B0 6= 0 〈u2〉, B0 = 0

0 B
2/5
0 t−6/5 B

2/7
2 t−10/7

1 (σB0)1/3t−4/3 (σB2)1/4t−3/2

2 (σ2B0)2/7t−10/7 (σ2B2)2/9t−14/9

3 (σ3B0)1/4t−3/2 (σ3B2)1/5t−8/5

Table 2. Scaling of the mean-square velocity at the origin for differing number of inhomogeneous
directions

These decay laws were determined by Phillips (1956), who also considered the more
complete problem of the final period of decay of the mean-square velocity at a point.

Predictions of high-Reynolds-number decay laws follow from assuming that en
scales on either σnB0 or σnB2, and t alone, and is independent of the viscosity ν. The
dimensions of en are [en] = l2+nt−2, the dimensions of the low-wavenumber spectral
coefficients are given by [B0] = l5/t2 and [B2] = l7/t2, and σ has units of length, so
that from a dimensional analysis one obtains

en ∝ (σnB0)
(2+n)/(5+n)t−6/(5+n) or en ∝ (σnB2)

(2+n)/(7+n)t−10/(7+n). (3.4)

The explicit time dependence given in the first expression is expected to be exact
because of the invariance of B0 whereas the time dependence in the second expression
can only be approximate since B2 is an unknown function of time.

During the final period, all characteristic length scales of the flow field grow like
(νt)1/2 as a consequence of the viscous dissipation of the smallest scales and diffusion
of the turbulence into the initial quiescent fluid. At high Reynolds numbers, we
postulate that the length scale of the energetic eddies l, (2.8), depends only on the
low-wavenumber spectral coefficients and time t. The scaling law obtained from
the above hypothesis applied to homogeneous turbulence has been shown to agree
with the results of large-eddy simulations (Chasnov 1994). Thus, one determines
dimensionally

l ∝ (σnB0)
1/(5+n)t2/(5+n) or l ∝ (σnB2)

1/(7+n)t2/(7+n). (3.5)

In table 1, the above asymptotic laws for en and l are written explicitly for decaying
turbulence with number of inhomogeneous directions n = 0, 1, 2, 3.

A Reynolds number of the flow field at time t formed from en, l and ν is given by

R(t) = e
1/2
n l1−n/2/ν, so that its scaling during the decay follows one of

R(t) =
(σnB0)

2/(5+n)

ν
t−(1+n)/(5+n) or R(t) =

(σnB2)
2/(7+n)

ν
t−(3+n)/(7+n). (3.6)
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The Reynolds number of the flow field thus decreases during the decay in all cases
so that the asymptotic laws above apply only over intermediate times for which
the turbulence has become fully-developed and the Reynolds number can still be
considered large.

Using the asymptotic decay laws for en and l given in table 1, a similarity state for
the spectrum En(k, t) may be constructed from

En(k, t) = enlÊn(k̂), k̂ = kl. (3.7)

Up to now, we have only considered statistics which are obtained by integrating
over the inhomogeneous directions of the flow field so that a direct analogy could
be made with known results for decaying homogeneous turbulence. We have thus
avoided direct consideration of the transport of turbulence into quiescent fluid. Now
we consider the evolution of the mean-square velocity of the fluid at a point. We
postulate with somewhat less justification a self-similar decaying profile of the mean-
square velocity as a function of the inhomogeneous coordinates x with origin at the
centre of the initial disturbance:

〈u2〉(x, t) = end
−nU2(x̂), x̂ = x/d, (3.8)

where d is a characteristic length scale of the width of the turbulent region within the
infinite fluid and may be defined for instance by (2.10). The scaling of the self-similar
profile on the integrated mean-square velocity en is required by the equality of both
sides of (3.8) after integration over the inhomogeneous directions.

The two length scales l and d are distinct – l characterizes the size of the energetic
eddies and d the extent of the tubulent region of the fluid. The length scale l is related
to the energy spectrum En(k) through (2.9), whereas there is no obvious relationship
between d and En(k). Nevertheless, we may speculate that in an asymptotic similarity
state all length scales of the flow field will grow at the same rate and d will become
proportional to l. If this is indeed the case, then it is possible to compute explicitly
from (3.8) using (3.4) and (3.5) the scaling of the mean-square velocity at the origin
of the initial disturbance:

〈u2〉 ∝ (σnB0)
2/(5+n)t−(6+2n)/(5+n) or 〈u2〉 ∝ (σnB2)

2/(7+n)t−(10+2n)/(7+n), (3.9)

depending on the form of the energy spectrum at small k. These decay laws are
displayed for n = 0, . . . , 3 in table 2; the more rapid decay in the mean-square velocity
at the origin with increasing number of inhomogeneous directions is due to the
greater outward spatial transport of energy from regions of high turbulent activity
towards regions of lower activity. For homogeneous turbulence (n = 0) there is no
mean spatial transport of energy, e0 = 1

2
〈u2〉, and the results in table 2 coincide with

those in table 1.
We have thus postulated the existence of an asymptotic similarity state for decay-

ing inhomogeneous turbulence, valid over intermediate times. This similarity state
may not occur during the initial period of flow evolution if the integral scale of the
turbulence l and the extent of the spatial inhomogeneity d are initially disparate so
that their ratio is far from its equilibrium value. In particular, if l � d then during
the initial period of decay the vast central region of the flow field should approximate
homogeneous turbulence. If l � d initially, and with a single inhomogeneous direc-
tion, the initial turbulence will look two-dimensional on length scales smaller than
d, and its dynamical evolution during the initial period may be quite different than
that predicted above. Finally, at late times in the flow evolution, the Reynolds num-
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ber decreases asymptotically, eventually yielding the final period of decay solutions
previously determined by Phillips (1956).

In the following Sections, we will present numerical simulations which test the
scaling relations presented in tables 1 and 2 for n = 1 corresponding to a single
inhomogeneous direction, and the occurrence of an intermediate asymptotic simi-
larity state for this flow field. With current computer capabilities, it is difficult to
systematically study the effect of widely different initial values of the length scales l
and d and instead we focus on the particular but important case when l and d are
of comparable magnitude initially. It is not unreasonable to suppose that all initial
conditions of the flow field will approach this state asymptotically at large Reynolds
numbers provided the similarity states determined above occur, and we will offer
some limited numerical evidence that this is indeed the case.

4. Numerical simulation method
4.1. Basics

We wish to perform numerical simulations of decaying inhomogeneous turbulence in
an infinite domain to test the scaling relations determined in the previous Section.
Although in this work we will only present results from simulations with a single
inhomogeneous direction, we nevertheless develop the general numerical methodology
for simulating one to three inhomogeneous directions. For the directions in which
the turbulence is homogeneous, it is common to apply periodic boundary conditions
to the flow field and to adjust the initial integral scale of the turbulence to be much
less than the periodicity length. For decaying turbulence in which the integral scale
increases during the decay, the evolution time of the flow field must be less than
the time at which the integral scale becomes comparable to the periodicity length.
Further evolution of the flow field past this time would result in unphysical results
which depend on the artificial periodicity length.

For directions in which the turbulence is inhomogeneous such that velocity fluc-
tuations vanish at infinity, we can still apply periodic boundary conditions within a
finite subdomain, and choose initial conditions such that the velocity fluctuations are
negligible on the boundaries. Such a numerical method may not be the most accurate
nor efficient (for another approach, see Corral & Jimenez 1995), but it is the most
expedient since it is the easiest to implement with our present pseudo-spectral code
which applies periodic boundary conditions in all three directions. A triply periodic
domain was also used in a recent numerical simulation of the shearless turbulence
mixing layer (Briggs et al. 1996). We thus define the Fourier transform of our velocity
field as

u(x) =
∑
nx,ny ,nz

û(k) exp (ik · x) (4.1)

with

k =

(
2π

Lx
nx,

2π

Ly
ny,

2π

Lz
nz

)
, (4.2)

where Lx, Ly , and Lz are the periodicity lengths in the three directions, nx, ny ,
and nz are integers, and the Fourier components of the velocity field satisfy the
complex-conjugate symmetry relation û(−k) = û(k)∗.

Let us denote periodicity lengths in homogeneous directions to be equal to L and
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in inhomogeneous directions to be equal to D. The spectrum En(k) is computed from

En(k) =
2πDnk2

Sk

∑
k−(δ/2)6|q|6k+(δ/2)

ûi(q)ûi(−q) (4.3)

where Sk is the number of Fourier modes within a spherical wavenumber shell of
width δ centred at k. Typically, we choose δ = 2π/D.

The mean-square turbulence velocity distribution is computed by inverse Fourier
transforming the velocity field in the inhomogeneous directions. The N physical space
collocation points in each inhomogeneous direction (with generic coordinate ξ) are
distributed according to

ξj = D

(
j

N
− 1

2

)
, j = 1, . . . , N. (4.4)

For instance, with a single inhomogeneous direction, say y, the mean-square velocity
at each collocation point yj is given by

〈u2〉(yj) =
∑
nx,nz

ûi(kx, yj , kz)ûi(−kx, yj ,−kz), (4.5)

where here ûi denotes the Fourier component of the velocity field with transform in
x and z only.

The integrated mean-square velocity of the turbulence is computed from the three-
dimensional Fourier components using

en = 1
2
Dn

∑
nx,ny ,nz

ûi(k)ûi(−k). (4.6)

The integral scale l, (2.8), is computed using (Chasnov 1994)

l =
πDn

4en

[
L

π
|û(0, 0, 0)|2 +

∑
k 6=0

|û(k)|2
k

(
2

π
Si(kL/2)

)]
, (4.7)

where Si(x) is a sine integral, and the integration over the separation length r in (2.8)
has been taken from zero to L/2. The length scale d, (2.10), characteristic of the
spatial inhomogeneity may be computed by inverse Fourier transforming the velocity
field in the inhomogeneous directions, forming the product with |x|2 on the physical
space collocation points given by (4.4), and then summing over all the grid points in
the inhomogeneous directions to perform the integration in physical space directly.
The average over the homogeneous directions may be taken in Fourier space in the
usual way.

An important non-dimensional statistic will be the ratio of the two length scales d
and l:

r(t) = d(t)/l(t), (4.8)

and we expect that if a complete similarity state in both the spectrum and mean-square
velocity distribution occurs, r approaches a constant of order unity asymptotically in
time. Furthermore, the constants introduced in defining d, (2.10), have been chosen so
that the maximum value of d, attained when the turbulence approaches homogeneity
in the defined inhomogeneous directions, is D/2 and (with D = L) is equal to the
maximum value of the integral scale l which occurs when the flow field consists of
only a mean velocity (a single Fourier mode with zero wavenumber).
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The attainment of sufficiently high Reynolds numbers so that molecular viscosity
does not explicitly enter the scaling relations necessitates the use of large-eddy
simulations with an ad-hoc subgrid-scale model. Several choices of subgrid-scale
model are possible, and we choose the simplest to implement within a spectral code
with the hope that the results for the decay exponents will be relatively insensitive to
our choice of model. The subgrid model we use is a generalization of the Kraichnan,
Chollet–Lesieur model (Kraichnan 1976; Chollet & Lesieur 1981) with a scaling of
the subgrid eddy viscosity on En(km, t) and km, where km is the maximum wavenumber
magnitude carried in the spectral simulation. Dimensionally, one has

νe(k, t) = ν+
e (k/km)(kn−1

m En(km, t))
1/2, (4.9)

and we take the same form of the dimensionless eddy viscosity ν+
e as in earlier work

(Chasnov 1994). This model was originally proposed for homogeneous turbulence
simulation and its use in inhomogeneous flows is questionable since the eddy viscosity
has the same value in both actively turbulent regions and quiescent fluid. Physically,
the eddy viscosity should approach zero in regions where the fluid is at rest. A subgrid
model such as the dynamic model (Germano et al. 1991) could have better properties
in this regard since the eddy viscosity is a function of the inhomogeneous coordinate
with value set by the turbulence itself, but this model is somewhat more difficult to
implement and we do not make use of it here.

4.2. Initial conditions

We will specify the statistical properties of our random initial conditions at t = 0 by
the spectrum En(k) and the averaged mean-square velocity of the turbulence 〈u2〉(x)
as a function of the inhomogeneous coordinates x. The spectrum and mean-square
velocity are related by the integral relation

en =

∫ ∞
0

En(k)dk =
1

2

∫
〈u2〉(x)dxn. (4.10)

We choose as our initial spectrum

En(k) = 1
2
asσ

nu2
0k
−1
p

(
k

kp

)s
exp

[
− sk

2

2k2
p

]
, (4.11)

with s an even natural number and where kp is the wavenumber at which En(k) is
maximum. The constant as is determined so that

en = 1
2
σnu2

0, (4.12)

yielding

as =

(
2

π

)1/2
s(s+1)/2

1× 3 · · · (s− 1)
. (4.13)

Furthermore, we choose a Gaussian profile for our initial mean-square velocity
statistic satisfying the constraint given by (4.10):

〈u2〉(x) =
1

(2π)n/2
u2

0 exp

[
−|x|

2

2σ2

]
, (4.14)

where x is the coordinate in the inhomogeneous direction.
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The length scales l and d defined in (2.9) and (2.10) may be computed at the initial
instant of time using (4.11) and (4.14). One finds

l0 =
( π

2s

)1/2 2× 4 · · · s
1× 3 · · · (s− 1)

k−1
p , d0 =

√
3

2
σ (4.15)

so that as expected l0 and d0 are directly proportional to k−1
p and σ, respectively. The

ratio r = d/l of these length scales at the initial instant for the particular cases s = 2
and 4 takes the approximate values

r0 ≈
{

0.4886σkp if s = 2
0.5182σkp if s = 4.

(4.16)

An initial flow field is generated with the above energy spectrum and mean-square
velocity profile through an iterative process. To begin the interation procedure a
random velocity field is generated in Fourier space with spectrum given by (4.11)
following the method of Rogallo (1981), i.e. we define

f1(k) =

(
En(k)

2πDnk2

)1/2

exp (i2πθ1) cos 2πφ, f2(k) =

(
En(k)

2πDnk2

)1/2

exp (i2πθ2) sin 2πφ

(4.17)

where θ1, θ2, and φ are uniform deviates chosen independently for each k subject to
the complex-conjugate symmetry of the Fourier components of the velocity field. The
three components of a random velocity field which satisfies the continuity equation
are then constructed using f1 and f2 by

û(0) =
1

kk⊥
(f2kxky − f1kkz,−f2k

2
⊥, f1kkx + f2kykz), (4.18)

where k = (k2
x + k2

y + k2
z )

1/2 and k⊥ = (k2
x + k2

z )
1/2.

In the first step of our two-step iteration procedure, the velocity field is in-
verse Fourier transformed to physical space in the inhomogeneous directions and its
magnitude at each inhomogeneous coordinate position is adjusted so that the mean-
square velocity follows (4.14) exactly. The velocity field is then Fourier transformed
back to wave space. In the second step of the procedure, the Fourier components
of the velocity field are projected onto a divergence-free field, and their ampli-
tudes at each Fourier mode are adjusted so that the spectrum En(k) satisfies (4.11)
exactly.

To be precise, for a single direction of inhomogeneity (n = 1) the first step of the
interation procedure is the assignment for each wavenumber component kx, kz in
the homogeneous directions and for each physical space collocation point yj in the
inhomogeneous direction,

û
(m+1/2)
i (kx, yj , kz) =

[
〈u2〉(yj)
〈u2〉(m)(yj)

]1/2

û
(m)
i (kx, yj , kz), (4.19)

where 〈u2〉(y) is the target mean-square velocity distribution given by (4.14), 〈u2〉(m)(y)
is the actual mean-square velocity distribution at the mth stage of the iteration process,
and the caret denotes the Fourier component with transform in x and z only. The
average is taken over the homogeneous directions in x and z.



On the decay of inhomogeneous turbulence 345

100

10–4

10–8

10–12

0

1

10

100

–80 –40 0 40 80

y/l0

©u2ª

u2
0

Figure 1. Convergence of the numerical results (solid lines) to the specified initial mean-square
velocity distribution (dashed line). Iterations shown are 0, 1, 2, 5, 10 and 100.

The second step of the iteration process is the assignment for each (kx, ky, kz)

û
(m+1)
i (k) =

[
En(k)

2πDnk2|P̂ij(k)ûj
(m+1/2)

(k)|2

]1/2

Pij(k)û
(m+1/2)
j (k), (4.20)

where En(k) is the target spectrum, and Pij(k) = δij−kikj/k2 projects the velocity field
onto its divergence-free part.

The mean velocity of the fluid, corresponding to the zero-wavenumber mode, must
be treated as a special case in (4.20). The mean velocity is non-zero only when s = 2
in (4.11) for which it takes the squared value

|û(0)|2 =
( σ
D

)n u2
0

π3/2k3
p

. (4.21)

We have chosen not to assign the zero-wavenumber mode in (4.20); nevertheless it was
observed to converge to its theoretical value for flows with a single inhomogeneous
direction.

The procedure for determining the initial flow field is iterated until convergence of
the mean-square velocity profile after application of (4.20). The convergence of the
above procedure for a single inhomogeneous direction is illustrated in figure 1. The
initial energy spectrum is given by (4.11) with n = 1, s = 2, u0 = 1, kp = 32, and
resolution 256× 512× 256. The target mean-square velocity distribution is given by
(4.14) with σ = 0.06396, so that r0 = 1 in (4.16). The curves show the convergence of
the distribution after 100 iterations. The dashed curve is the analytical form of the
mean-square velocity profile given by (4.14). The mean-square velocity profile rapidly
converges to the analytical profile in the centre of the domain, but converges much
more slowly at the tails.

With our initial conditions of the flow field specified, the only non-dimensional
parameters which characterize our initial statistical state are the form of the low-
wavenumber spectrum specified by s, which we take to be either 2 or 4 to test the
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scalings of §3, and the ratio r0 of the initial length scales, for which simulations are
performed with values 1, 2, and 4.

5. Numerical results for a single inhomogeneous direction
5.1. Test of accuracy

The largest errors in our numerical simulations are due to inadaquate small-scale
resolution and the assumption of periodic boundary conditions in both the homo-
geneous and inhomogeneous directions. The means of reducing these two types of
errors are in conflict: improving the resolution requires positioning the initial energy
distribution at the largest scales whereas reducing the effect of boundary conditions
requires just the opposite. Obviously, a compromise is necessary and it is prudent to
perform a simple test to judge the overall accuracy of our calculations.

Our main simulation which tests the scaling laws of §3 for s = 2, corresponding to
a k2 spectrum at low wavenumbers, is performed with 256 × 512 × 256 grid points
and kp = 32, u0 = 1 in (4.11), and with r0 = 1. The grid spacing is the same in each
direction so that the box length in the single inhomogeneous direction is twice that
of the homogeneous directions (we take D = 25/3π; L = 22/3π). The accuracy of this
calculation is judged by performing two additional simulations with 128× 256× 128
grid points and kp = 32 or kp = 16. The former calculation (kp = 32) quantifies the
subgrid-scale errors since kp/km is reduced by a factor of 2, where km is the maximum
resolved wavenumber of the computation. The latter calculation (kp = 16) measures
the influence of the periodic boundary conditions on the results by reducing kp/k0 by
a factor of 2, where k0 is the minimum wavenumber of the simulation, while keeping
kp/km fixed.

The decay of the integrated mean-square velocity and the time evolution of the
length scales l and d for these three calculations are shown in figure 2. The solid
line are the results of the higher resolution calculation; the dashed line and dotted
lines are the lower resolution calculations. The dotted line tests the subgrid-scale
model errors (kp = 32) and the dashed line tests the errors due to the periodic
boundary conditions (kp = 16). The large differences between the dotted lines on
the one hand, and the dashed and solid lines on the other, at the early times of
evolution indicates substantial errors due to the inadaquate small-scale resolution.
However these errors diminish at later times after the integral scale of the flow has
increased significantly, thus providing additional small-scale resolution relative to the
energy-containing scales. The improvement in accuracy of a large-eddy simulation
after long times of decay has already been observed in decaying isotropic turbulence
simulations (Piomelli & Chasnov 1996). Differences between the solid and dashed
lines at the latest times of evolution indicate either poor statistical sample of the
largest eddies, or an adverse influence of the periodic boundary conditions. It is
possible to rectify a poor statistical sample by averaging over an ensemble of flows
(which we do not attempt here), but errors due to the direct influence of the periodic
boundary conditions are more serious. However, the calculations shown in figure 2
demonstrate that the magnitude of these errors is reasonably small and may be
acceptable over the times simulated. We further comment that the calculation of en
appears to be more robust than that of the length scales.

5.2. Main results

We now present results to directly test the scaling laws of §3. The calculations we
present in detail are of resolution 256× 512× 256, with kp = 32 and u0 = 1 in (4.11).
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Figure 2. Test of the effects of small-scale resolution (dotted line) and periodic boundary conditions
(dashed line). The solid line is the most accurate calculation to which the other two should be
compared. (a) Time-evolution of the integrated mean-square velocity e1. (b) Time-evolution of the
inhomogeneity length scale d and the integral scale l.

Both scaling laws of §3 are tested by performing two calculations, the first with s = 2
in (4.11), and the second with s = 4. Furthermore, we choose σ according to (4.16)
so that r0 = 1 in the first simulation and r0 = 2 in the second. The latter choice has
been determined to more rapidly approach the asymptotic similarity state.

In figure 3, we plot from both of the above simulations the logarithmic derivative of
the integrated mean-square velocity e1, which corresponds to the power-law exponent
of the time if the decay proceeds as a power law. The long-time results from the
numerical calculations are to be compared to the explicit power-law exponents of the
time found in table 1 of §3 with n = 1, corresponding to a single inhomogeneous
direction. These analytical results are shown as the dotted lines in figure 3. Our
calculations of the power-law exponent of e1 with s = 2 labelled by B0 yields an
asymptotic decay exponent fluctuating between −1.02 and −1.03, which deviates at
most by 3% from the theoretical exponent −1. The decay exponent of e1 for s = 4
labelled by B2 is approximately −1.17 at the latest time calculated, which is 7%
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Figure 3. Time evolution of the power-law exponent of e1. The solid lines labelled with the non-zero
leading-order low-wavenumber spectral coefficient are the results of the large-eddy simulations and
the dotted lines are the exact and approximate analytical results discussed in §3.

smaller in magnitude than the theoretical decay exponent −1.25, obtained under the
(false) assumption that B2(t) is independent of time. An increase in B2(t) during the
decay results theoretically in a decay exponent smaller in magnitude than −1.25, as
is found from the simulation data.

In figure 4 the logarithmic derivatives of the length scales d and l from both
calculations are plotted, and the dotted lines again correspond to the theoretical
results. Here, the solid line corresponds to s = 2 and the dashed lines to s = 4,
and the lines are labelled by the corresponding length scales d and l. The agreement
between the simulations and the theoretical results are not as good as in figure 3,
and we will later show in §5.3 that this is due to adverse affects of assuming periodic
boundary conditions. Nevertheless, the qualitative agreement exhibited here is not
unreasonable.

As discussed in §3, a complete similarity state for both the spectrum and the
distribution of the mean-square velocity based on the low-wavenumber coefficients
requires the ratio of the length scales r(t) = d/l to approach a constant asymptotically.
A study of the evolution of r(t) for s = 2 and 4 and for r0 = 1, 2 and 4 is presented in
figure 5. The additional computations presented are also of resolution 256×512×256
with kp = 32 and u0 = 1. The desired value of r0 is obtained by changing σ. Although
the numerical results are not decisive, they do suggest that the flow field evolves in
time so as to obtain nearly the same constant value of r asymptotically during the
decay. The results of figure 5(a) point to a unique intermediate asymptotic similarity
state of the flow field when s = 2, independent of all aspects of the initial conditions
except the initial value of the low-wavenumber spectral coefficient B0. However, when
s = 4 the precise value of B2(t) during the decay must depend on its time history
so that strictly speaking a unique similarity state does not occur, though it is still
plausible that r(t) approaches a unique value during the intermediate similarity state
for all initial conditions.

We consider next the time evolution of the spectrum E1(k, t), presented in figure 6.
Figure 6(a) corresponds to s = 2 and figure 6(b) to s = 4. The non-dimensional times
plotted are shown in the caption. The invariance of the low-wavenumber coefficient
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of the spectrum for s = 2 is apparent in figure 6(a), whereas the slow increase in
the low-wavenumber spectral coefficient B2(t) can be observed in figure 6(b). The
evolution of these spectra appear similar to previous numerical results obtained for
the decay of homogeneous turbulence (Chasnov 1994). A collapse of the spectra in
self-similar variables, see (3.7), at the latest times simulated is displayed in figures 7(a)
and 7(b). For s = 2, the spectrum t2/3E1 is plotted versus t1/3k, and for s = 4, tE1 is
plotted versus t1/4k. The times, spectra, and wavenumbers are non-dimensionalized
using u0 and l0. The collapse of the spectra is reasonable at low wavenumbers and
near the spectral peaks, but not as good at large wavenumbers. This may be indicative
of subgrid-scale modelling errors.

Finally, the time evolution of the distribution of the mean-square velocity, 〈u2〉(y, t),
is presented in figures 8(a) and 8(b) corresponding to s = 2 and s = 4, respectively.
The times plotted are the same as those plotted for the spectra. A transport of
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similarity state predicted in §3. (a) s = 2; (b) s = 4.

the energy during the decay outward along the inhomogeneous directions is readily
apparent from the figures. The rather rapid initial increase in the energy at the
ends of the computational box during the decay is due to the loss of small-scale
resolution as the energy cascades to the largest computational wavenumbers. At
the last times calculated, the value of the mean-square velocity at the ends of the
computational box are still approximately six orders of magnitude less than that
at the centre, and it seems reasonable that our periodic box still approximates an
infinite domain. The corresponding self-similar mean-square velocity profiles, (3.9),
are plotted in figures 9(a) and 9(b). For s = 2, the distribution t4/3〈u2〉 is plotted
versus t−1/3y, and for s = 4, t3/2〈u2〉 is plotted versus t−1/4y. A good collapse of the
profiles is observed. The self-similarity of the mean-square velocity distribution is best
at the centre of the initial tubulent fluid, and deteriorates at the ends, presumably
due to adverse influences of the periodic boundary conditions.

5.3. Additional computations

The results just presented give us some confidence in the overall correctness of the
theoretical scaling relations determined in §3. The decay laws of the integrated mean-
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Figure 8. Time evolution of the mean-square velocity distribution 〈u2〉(y, t). The times plotted are
the same as in figure 6. (a) s = 2; (b) s = 4.

square velocity are in good agreement with the analytical decay laws, and the spectra
and mean-square velocity distributions appear to decay following the predicted self-
similar forms. The main lack of agreement between the simulation results and the
theoretical scaling laws is in the time exponents of the integral scales, though we
have already provided evidence that the computation of these exponent values are the
most susceptible to the numerical errors introduced by the use of periodic boundary
conditions.

To try to minimize the adverse consequences of the periodic boundary conditions,
we have performed additional simulations with 256× 512× 256 grid points with the
initial spectral peak at a very large wavenumber (kp = 126). As we have already
shown at the beginning of this Section, these calculations are inaccurate over short
simulation times, but increase in accuracy as the spectral peak moves to smaller
wavenumbers during the decay. The calculation results we reproduce here were
performed with s = 2 and with r0 = 1 and 4, with the main goal to accurately
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Figure 9. Rescaling of the mean-square velocity distribution at the last five times plotted in
figure 8 according to the similarity state predicted in §3. (a) s = 2; (b) s = 4.

compute the long-time power-law exponents of the integral scales so as to precisely
test the theoretical result for this exponent found in §3.

In figure 10, the logarithmic derivative of the length scales d and l from these two
calculations are plotted versus time. For r0 = 1, figure 10(a), the power-law exponent
of d is now found to be in excellent agreement asymptotically with the predicted
value 1/3, shown as the dotted line, while the power-law exponent of l is observed to
be slowly increasing towards the theoretical result. For r0 = 4, both the power-law
exponents of d and l agree reasonably well with the theoretical value 1/3 over the
latest times simulated.

A plot of the length-scale ratios r(t) = d/l from the calculations with r(0) = 1 and 4
is shown in figure 11. As a consequence of the poor resolution of the initial spectrum,
the correct value of r is not reproduced from the numerics at t = 0, and the short-time
evolution of r(t) is incorrect. Nevertheless, the long-time evolution of r(t) is in close
agreement with the computational results shown in figure 5(a), indicating that the
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final similarity state attained in these simulations with kp = 126 is approximately the
same as that attained with kp = 32.

6. Conclusions
The main purpose of this work has been to extend the scaling arguments developed

for decaying homogeneous turbulence to the decay of inhomogeneous turbulence in
an unbounded domain, thus demonstrating their more general validity. Our analytical
and numerical results taken together point to the existence of intermediate asymptotic
similarity states at high Reynolds numbers. These similarity states occur for zero to
three directions of inhomogeneity – zero directions corresponding to homogeneous
turbulence – and depend only on the initial form of the low-wavenumber spectrum as-
sociated with the mean-square velocity integrated over the inhomogeneous directions
of the flow field.
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